Quantcast
Channel: Plotly – Modern Data
Viewing all articles
Browse latest Browse all 48

Tufte style visualizations in R using Plotly

$
0
0

This post is inspired by Lukasz Piwek’s awesome Tufte in R post. We’ll try to replicate Tufte’s visualization practices in R using Plotly. You can read more about Edward Tufte here.

One easy way to replicate the graphs showcased on Lukasz’s blog would be to simply use ggplotly() on his ggplot2() code.

We’ll use plot_ly() instead.

Minimal Line Plot

library(plotly)

x <- 1967:1977
y <- c(0.5,1.8,4.6,5.3,5.3,5.7,5.4,5,5.5,6,5)
hovertxt <- paste("Year: ", x, "<br>", "Exp: ", y)
  
plot_ly(x = x, y = y, mode = "line + markers", name = "",
        marker = list(color = "#737373", size = 8), 
        line = list(width = 1), showlegend = F, hoverinfo = "text", text = hovertxt) %>% 
  
  add_trace(x = c(1966.75, 1977.25), y = c(5, 5), 
            mode = "lines", line = list(dash = "5px", color = "#737373"), 
            showlegend = F, hoverinfo = "none") %>% 
  
  add_trace(x = c(1966.75, 1977.25), y = c(6, 6), 
            mode = "lines", line = list(dash = "5px", color = "#737373"), 
            showlegend = F, hoverinfo = "none") %>% 
  
  layout(xaxis = list(title = "", showgrid = F, tickmode = "array",  
                      type = "linear", autorange = F, range = c(1966.75, 1977.25),
                      tickvals = x, 
                      tickfont = list(family = "serif", size = 10), ticks = "outside"),
         
         yaxis = list(title = "", showgrid = F, tickmode = "array",  
                      type = "linear", 
                      tickvals = 1:6, ticktext = paste0("$", c(300, 320, 340, 360, 380, 400)), 
                      tickfont = list(family = "serif", size = 10), ticks = "outside"),
         
         margin = list(r = 20), 
         
         annotations = list(
           list(xref = "x", yref = "y", x = 1977.25, y = 5.5, 
                text = "5%", showarrow = F, ax = 0, ay = 0),
           
           list(xref = "x", yref = "y", x = 1976, y = 1.5, align = "right",
                text = "Per capita<br>budget expenditures<br>in constant dollars", 
                showarrow = F, ax = 0, ay = 0)
         ))

Range-frame (or quartile-frame) scatterplot

library(plotly)

x <- mtcars$wt
y <- mtcars$mpg
hovertxt <- paste("Weight:", x, "<br>", "Miles per gallon: ", y)

plot_ly(x = x, y = y, mode = "markers", marker = list(color = "#737373"), 
        hoverinfo = "text", text = hovertxt) %>% 
  layout(xaxis = list(title = "Car weight (lb/1000)", titlefont = list(family = "serif"), 
                      showgrid = F, tickmode = "array",  
                      tickvals = summary(x), ticktext = round(summary(x), 1),
                      tickfont = list(family = "serif", size = 10), ticks = "outside"),
         
         yaxis = list(title = "Miles per gallon of fuel", titlefont = list(family = "serif"),
                      showgrid = F, tickmode = "array",  
                      tickvals = summary(y), ticktext = round(summary(y), 1),
                      tickfont = list(family = "serif", size = 10), ticks = "outside"))

Dot-dash (Rug) plot

library(plotly)
library(dplyr)

x <- mtcars$wt
y <- mtcars$mpg
hovertxt <- paste("Weight:", x, "<br>", "Miles per gallon: ", y)


ds <- data.frame(x, y, labelsx = round(x, 0), labelsy = round(y,0))
ds <- ds %>% arrange(x)
ds$labelsx <- c(rep("", 7), 2, 
                rep("", 12), 3,
                rep("", 7), 4,
                rep("", 2), 5)

ds <- ds %>% arrange(y)
ds$labelsy <- c(rep("", 1), 10, 
                rep("", 5), 15,
                rep("", 8), 20,
                rep("", 8), 26,
                rep("", 5), 34)


plot_ly(ds, x = x, y = y, mode = "markers", marker = list(color = "#737373"), 
        hoverinfo = "text", text = hovertxt) %>% 
  layout(xaxis = list(title = "Car weight (lb/1000)", titlefont = list(family = "serif"), 
                      showgrid = F,tickmode = "array",
                      tickvals = x, ticktext = labelsx, ticklen = 10,
                      tickfont = list(family = "serif", size = 10), ticks = "outside"),
         
         yaxis = list(title = "Miles Per Gallon of Fuel", titlefont = list(family = "serif"), 
                      showgrid = F,tickmode = "array",  
                      tickvals = y, ticktext = labelsy, ticklen = 10,
                      tickfont = list(family = "serif", size = 10), ticks = "outside"))

Minimal Boxplot

This one needs a little bit of work. Since geom_tufteboxplot() is not yet supported, using ggplotly() won’t work either.

library(plotly)

# Empty plot
p <- plot_ly()

vec <- sort(unique(quakes$mag))

# Each mean (dot) and quartile (line - segment) will have to be added as a separate trace

for(i in vec){
  summ <- boxplot.stats(subset(quakes, mag == i)$stations)$stats
  hovertxt <- paste("Mean:", summ[3], "<br>",
                    "IQR:", IQR(subset(quakes, mag == i)$stations))

  p <- add_trace(p, x = i, y = summ[3], mode = "markers", hoverinfo = "text", text = hovertxt,
                 marker = list(color = "#737373", size = 6), evaluate = T, showlegend = F)
  
  p <- add_trace(p, x = c(i, i), y = c(summ[1], summ[2]), mode = "lines", hoverinfo = "none", 
                 marker = list(color = "#737373"),
                 line = list(width = 1), evaluate = T, showlegend = F)
  
  p <- add_trace(p, x = c(i, i), y = c(summ[4], summ[5]), mode = "lines", hoverinfo = "none",
                 marker = list(color = "#737373"),
                 line = list(width = 1), evaluate = T, showlegend = F)
  
  
}

# Layout options
p <- layout(p, 
            xaxis = list(showgrid = F, nticks = length(vec)),
            yaxis = list(showgrid = F),
            annotations = list(
              list(xanchor = "left", x = 4, y = 120, 
                   text = "Number of stations<br>reporting Richter Magnitude<br>of Fiji earthquakes (n=1000)",
                   align = "left",
                   showarrow = F, ax = 0, ay = 0)))
p

Minimal Barchart

library(psych)
library(reshape2)

ds <- melt(colMeans(msq[,c(2,7,34,36,42,43,46,55,68)],na.rm = T)*10)
ds$trait <- rownames(ds)
hovertxt <- paste(ds$trait, ":", round(ds$value,3))

plot_ly(ds, x = 1:nrow(ds), y = value, type = "bar", marker = list(color = "#737373"), 
        hoverinfo = "text", showlegend = F, text = hovertxt) %>% 
  
  add_trace(x = c(0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6, NA, 0.4, 9.6), 
            y = c(1, 1, NA, 2, 2, NA, 3, 3, NA, 4, 4, 5, 5), mode = "lines", 
            marker = list(color = "white"), showlegend = F) %>% 
  
  layout(xaxis = list(title = "", tickmode = "array", tickvals = 1:nrow(ds), ticktext = trait,
                      tickfont = list(family = "serif", size = 10)),
         yaxis = list(title = "", showgrid = F), 
         annotations = list(
           list(x = 1, xanchor = "left", y = 6, showarrow = F, ax = 0, ay = 0, align = "left",
                text = "Average scores<br>on negative emotion traits<br>from 3896 participants<br>(Watson et al., 1988)")))


Viewing all articles
Browse latest Browse all 48

Trending Articles